(本小题满分12分)如图,在四棱台ABCD—A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.(1)求证:B1B//平面D1AC;(2)求二面角B1—AD1—C的余弦值.
如图所示,ABCD是一块边长为100 m的正方形地皮,其中AST是一半径为90 m的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P在上,相邻两边CQ、CR落在正方形的边BC、CD上.求矩形停车场PQCR面积的最大值和最小值.
已知sin2θ(1+cotθ)+cos2θ(1+tanθ)=2,θ∈(0,2π),求tanθ的值.
已知△ABC的三个内角A、B、C,求当A为何值时,取得最大值,并求出这个最大值.
已知,,α,β∈(0,π). (1)求tan(α+β)的值; (2)求函数f(x)=sin(x-α)+cos(x+β)的最大值.
若关于x的方程2cos2(p + x)- sinx + a =" 0" 有实根,求实数a的取值范围。