已知10箱苹果,以每箱15千克为标准,超过15千克的数记为正数,不足15千克的数记为负数,称重记录如下:+0.2,—0.2,+0.7,—0.3,—0.4,+0.6,0,—0.1,+0.3,—0.2(1)求10箱苹果的总重量;(2)若每箱苹果的重量标准为100.5(千克),则这10箱有几箱不符合标准的?
先化简,再求值: ( 2 - 2 a - 2 ) ÷ a 2 - 9 a - 2 ,其中 a = 3 - 3 .
计算: ( 2 - 2 ) 0 + ( - 1 2 ) - 2 + 2 sin 45 ° - 8 .
如图,已知抛物线 y = a x 2 + bx + c 经过 A ( - 2 , 0 ) , B ( 4 , 0 ) , C ( 0 , 4 ) 三点.
(1)求该抛物线的解析式;
(2)经过点 B 的直线交 y 轴于点 D ,交线段 AC 于点 E ,若 BD = 5 DE .
①求直线 BD 的解析式;
②已知点 Q 在该抛物线的对称轴 l 上,且纵坐标为1,点 P 是该抛物线上位于第一象限的动点,且在 l 右侧,点 R 是直线 BD 上的动点,若 ΔPQR 是以点 Q 为直角顶点的等腰直角三角形,求点 P 的坐标.
如图, AB 是 ⊙ O 的直径,点 D 在 ⊙ O 上, AD 的延长线与过点 B 的切线交于点 C , E 为线段 AD 上的点,过点 E 的弦 FG ⊥ AB 于点 H .
(1)求证: ∠ C = ∠ AGD ;
(2)已知 BC = 6 , CD = 4 ,且 CE = 2 AE ,求 EF 的长.
如图,为了测量某条河的对岸边 C , D 两点间的距离.在河的岸边与 CD 平行的直线 EF 上取两点 A , B ,测得 ∠ BAC = 45 ° , ∠ ABC = 37 ° , ∠ DBF = 60 ° ,量得 AB 长为70米.求 C , D 两点间的距离(参考数据: sin 37 ° ≈ 3 5 , cos 37 ° ≈ 4 5 , tan 37 ° ≈ 3 4 ) .