如图, AB 是 ⊙ O 的直径,点 D 在 ⊙ O 上, AD 的延长线与过点 B 的切线交于点 C , E 为线段 AD 上的点,过点 E 的弦 FG ⊥ AB 于点 H .
(1)求证: ∠ C = ∠ AGD ;
(2)已知 BC = 6 , CD = 4 ,且 CE = 2 AE ,求 EF 的长.
如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8).(1)求抛物线C1关于原点对称的抛物线C2的解析式;(2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.
(1)知识再现 如图(1):若点A,B在直线l同侧,A,B到l的距离分别是3和2,AB=4,现在直线l上找一点P,使AP+BP的值最小,做法如下; 作点A关于直线l的对称点A′,连接BA′,与直线l的交代就是所求的点P,线段BA′的长度即为AP+BP的最小值,请你求出这个最小值. (2)实践应用 ①如图(2),⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是 ; ②如图(3),Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为 ; ③如图(4),菱形ABCD中AB=2,∠A=120°,点P,Q,K,分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为 ; ④如图(5),在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是 . (3)拓展延伸 如图(6),在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD,保留作图痕迹,不必写出作法.
如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD的形状,并说明理由;(3)探究:当a为多少度时,△AOD是等腰三角形?
如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为40,并把条形统计图补充完整;(2)扇形统计图中m=10,n=20,表示“足球”的扇形的圆心角是72度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.