(本小题满分14分)已知数列满足:(其中常数).(Ⅰ)求数列的通项公式;(Ⅱ)求证:当时,数列中的任何三项都不可能成等比数列;(Ⅲ)设为数列的前项和.求证:若任意,
某饮料公司招聘一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为 A 饮料,另外4杯为 B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯 A 饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令 X 表示此人选对 A 饮料的杯数.假设次人对 A 和 B 两种饮料没有鉴别能力. (1)求 X 的分布列; (2)求此员工月工资的期望.
设整数 n ≥ 4 , P ( a , b ) 是平面直角坐标系xoy中的点,其中 a , b ∈ 1 , 2 , 3 . . . . . . n , a > b
(1)记 A n 为满足 a - b = 3 的点P的个数,求 A n ; (2)记 B n 为满足 1 3 a - b 是整数的点P的个数,求
如图,在正四棱柱 A B C D - A 1 B 1 C 1 D 1 中, A A 1 = 2 , A B = 1 ,点 N 是 B C 的中点,点 M 在 C C 1 上,设二面角 A 1 - D N - M 的大小为 θ . (1)当 θ = 90 ° 时,求 A M 的长; (2)当 cos θ = 6 6 时,求 C M 的长.
解不等式: x + 2 x - 1 < 3
在平面直角坐标系 x O y 中,求过椭圆 x = 5 cos φ y = 3 sin φ φ 为参数 的右焦点且与直线 x = 4 - 2 t y = 3 - t ( t 为参数)平行的直线的普通方程。