(本小题满分14分)已知数列满足:(其中常数).(Ⅰ)求数列的通项公式;(Ⅱ)求证:当时,数列中的任何三项都不可能成等比数列;(Ⅲ)设为数列的前项和.求证:若任意,
已知抛物线C: 的焦点为F,ABQ的三个顶点都在抛物线C上,点M为AB的中点,.(1)若M,求抛物线C方程;(2)若的常数,试求线段长的最大值.
已知函数,,(1)若的最小值为2,求值;(2)设函数有零点,求的最小值.
如图,平面平面,四边形为矩形,.为的中点,.(1)求证:;(2)若与平面所成的角为,求二面角的余弦值.
已知数列的首项,,,(1)求证:数列为等比数列;(2)若,求最大的正整数.
在中,角所对的边为,且满足,(1)求角的值;(2)若且,求的取值范围.