(本小题满分14分)已知数列满足:(其中常数).(Ⅰ)求数列的通项公式;(Ⅱ)求证:当时,数列中的任何三项都不可能成等比数列;(Ⅲ)设为数列的前项和.求证:若任意,
已知为锐角,且,函数,数列{}的首项. (1)求函数的表达式; (2)求数列的前项和.
的外接圆半径,角的对边分别是,且 (1)求角和边长; (2)求的最大值及取得最大值时的的值,并判断此时三角形的形状.
已知函数. (1)若的解集为,求实数的值. (2)当且时,解关于的不等式.
如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形. (Ⅰ)求AM的长; (Ⅱ)求sin∠ANC.
已知函数f(x)=alnx+(a≠0)在(0,)内有极值. (I)求实数a的取值范围; (II)若x1∈(0,),x2∈(2,+∞)且a∈[,2]时,求证:f(x1)﹣f(x2)≥ln2+.