(本小题满分14分)已知函数.(Ⅰ)函数在区间上是增函数还是减函数?证明你的结论;(Ⅱ)当时,恒成立,求整数的最大值;(Ⅲ)试证明:()。
已知.(1)曲线y=f(x)在x=0处的切线恰与直线垂直,求的值;(2)若x∈[a,2a]求f(x)的最大值;(3)若f(x1)=f(x2)=0(x1<x2),求证:.
如图,已知椭圆的长轴为AB,过点B的直线与轴垂直,椭圆的离心率,F为椭圆的左焦点,且(1)求此椭圆的标准方程;(2)设P是此椭圆上异于A,B的任意一点, 轴,H为垂足,延长HP到点Q,使得HP=PQ,连接AQ并延长交直线于点,为的中点,判定直线与以为直径的圆O位置关系。
某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。该市决定制定生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少亿元,至多亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.若,,请你分析能否采用函数模型y=作为生态环境改造投资方案.
在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.(1)求证:BD⊥PC;(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;(3)求二面角A﹣PC﹣B的余弦值.
已知a,b,c分别是的三个内角A,B,C的对边,(1)求A的大小;(2)当时,求的取值范围.