在如图的直三棱柱中,,点是的中点. (1)求证:∥平面;(2)求异面直线与所成的角的余弦值;(3)求直线与平面所成角的正弦值;
求一条渐近线方程是3x+4y=0,一个焦点是(5,0)的双曲线标准方程.
已知椭圆=1(a>b>0)的左右焦点分别为F1,F2,短轴两个端点为A,B,且四边形F1AF2B是边长为2的正方形.(Ⅰ)求椭圆方程;(Ⅱ)若C,D分别是椭圆长轴的左右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.求证:为定值.
已知椭圆C1:+=1(0<a<,0<b<2)与椭圆C2:+=1有相同的焦点.直线L:y=k(x+1)与两个椭圆的四个交点,自上而下顺次记为A、B、C、D.(Ⅰ)求线段BC的长(用k和a表示);(Ⅱ)是否存在这样的直线L,使线段AB、BC、CD的长按此顺序构成一个等差数列.请说明详细的理由.
已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率.(1)求椭圆E的方程;(2)求∠F1AF2的平分线所在直线l的方程;(3)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.
已知抛物线C:y=ax2,点P(1,﹣1)在抛物线C上,过点P作斜率为k1、k2的两条直线,分别交抛物线C于异于点P的两点A(x1,y1),B(x2,y2),且满足k1+k2=0.(1)求抛物线C的焦点坐标;(2)若点M满足,求点M的轨迹方程.