已知函数 f x = sin ω x + φ ω > 0 , 0 < φ < π 的周期为 π ,图象的一个对称中心为 π 4 , 0 ,将函数 f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个 π 2 单位长度后得到函数 g x 的图象。 (Ⅰ)求函数 f x 与 g x 的解析式 (Ⅱ)是否存在 x 0 ∈ π 6 , π 4 ,使得 f x 0 , g x 0 , f x 0 g x 0 按照某种顺序成等差数列?若存在,请确定 x 0 的个数,若不存在,说明理由; (Ⅲ)求实数 a 与正整数 n ,使得 F x = f x + a g x 在 0 , n π 内恰有2013个零点.
已知双曲线的中心在原点,焦点在坐标轴上,离心率,且双曲线过点,求双曲线的方程.
已知且,设命题:函数在R上单调递减,命题:不等式的解集为R,如果命题“”为真命题,“”为假命题,求实数的取值范围
某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种,现在餐厅准备了 5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备不同的素菜品种多少种?
6女,4男中随机选出3位参加测验.每位女同学能通过测验的概率为0.8,每位男同学能通过测验的概率为0.6.试求: ⑴选出的3位同学中,至少有一位男同学的概率; ⑵10位同学中的女同学甲和男同学乙同时被先选中且通过测验的概率.
如果a(1-a)4+a2(1+2a)k+a3(1+3a)2的展开式中含a4项的系数为114,求正整数k的值。