如图,在正方形 O A B C 中, O 为坐标原点,点 A 的坐标为 ( 10 , 0 ) ,点 C 的坐标为 ( 0 , 10 ) ,分别将线段 O A 和 A B 十等分,分点分别记为 A 1 , A 2 , ⋯ , A 9 和 B 1 , B 2 , ⋯ , B 9 ,连接 O B i ,过 A i 作 x 轴的垂线与 O B i 交于点 P i ( i ∈ N * , 1 ≤ i ≤ 9 ) 。
(1)求证:点 P i ( i ∈ N * , 1 ≤ i ≤ 9 ) 都在同一条抛物线上,并求抛物线 E 的方程; (2)过点 C 作直线 l 与抛物线E交于不同的两点 M , N , 若 ∆ O C M 与 ∆ O C N 的面积之比为4:1,求直线 l 的方程。
设函数f(x)=|x-1|+|x-a|. (1)若a=-1,解不等式f(x)≥3; (2)如果∀x∈R,f(x)≥2,求a的取值范围.
已知a,b,c均为正数,证明:a2+b2+c2+2≥6,并确定a、b、c为何值时,等号成立.
设计算法求+++…+的值,并画出程序框图.
已知函数y=,写出求该函数函数值的算法及程序框图.
如图所示,平行四边形OABC,顶点O,A,C分别表示0,3+2i,-2+4i,试求: (1) 、所表示的复数; (2)对角线所表示的复数; (3)求B点对应的复数.