(本小题满分12分)如图,四棱锥P—ABCD中,PA平面ABCD,底面ABCD是直角梯形,AB⊥AD,CD⊥AD,CD=2AB,M为PC中点,(Ⅰ)求证://平面;(Ⅱ)求证:平面PDC平面PAD.
甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动. (Ⅰ)求选出的4名选手均为男选手的概率. (Ⅱ)记为选出的4名选手中女选手的人数,求的分布列和期望.
已知直线的极坐标方程为,圆的参数方程为(其中为参数). (Ⅰ)将直线的极坐标方程化为直角坐标方程; (Ⅱ)求圆上的点到直线的距离的最小值.
已知函数 (1)求解不等式; (2)若关于的不等式有解,求实数的取值范围.
已知函数的图象过点(1,2),相邻两条对称轴间的距离为2,且的最大值为2. (Ⅰ)求的单调递增区间; (Ⅱ)计算; (Ⅲ)设函数,试讨论函数在区间[1,4]上的零点情况.
如图,在半径为1,圆心角为的扇形的弧上任取一点,作,交于点,求的最大面积.