已知函数.(Ⅰ)当时,函数取得极大值,求实数的值;(Ⅱ)已知结论:若函数在区间内存在导数,则存在,使得. 试用这个结论证明:若函数(其中),则对任意,都有;(Ⅲ)已知正数满足,求证:对任意的实数,若时,都有.
一束光线从点出发,经直线上一点反射后,恰好穿过点.(Ⅰ)求点关于直线的对称点的坐标; (Ⅱ)求以、为焦点且过点的椭圆的方程; (Ⅲ)设直线与椭圆的两条准线分别交于、两点,点为线段上的动点,求点 到的距离与到椭圆右准线的距离之比的最小值,并求取得最小值时点的坐标.
已知函数. (1)求函数在区间(为自然对数的底)上的最大值和最小值; (2)求证:在区间上,函数的图象在函数的图象的下方; (3)求证:≥ .
下列不等式一定成立的是( )
已知函数(其中).(Ⅰ)若函数在点处的切线为,求实数的值;(Ⅱ)求函数的单调区间.
直线AB过抛物线x2=2py(p>0)的焦点F,并与其相交于A、B两点,Q是线段AB的中点,M是抛物线的准线与y轴的交点,O是坐标原点.(Ⅰ)求的取值范围;(Ⅱ)过A、B两点分别作此抛物线的切线,两切线相交于N点.求证:;(Ⅲ)若p是不为1的正整数,当,△ABN的面积的取值范围为[5,20]时,求该抛物线的方程.