已知函数. (1)求函数在区间(为自然对数的底)上的最大值和最小值; (2)求证:在区间上,函数的图象在函数的图象的下方; (3)求证:≥ .
已知函数(Ⅰ)若对任意,使得恒成立,求实数的取值范围;(Ⅱ)证明:对,不等式成立.
设点A(,0),B(,0),直线AM、BM相交于点M,且它们的斜率之积为.(Ⅰ)求动点M的轨迹C的方程;(Ⅱ)若直线过点F(1,0)且绕F旋转,与圆相交于P、Q两点,与轨迹C相交于R、S两点,若|PQ|求△的面积的最大值和最小值(F′为轨迹C的左焦点).
正方形与梯形所在平面互相垂直,,,点在线段上且不与重合。(Ⅰ)当点M是EC中点时,求证:BM//平面ADEF;(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥的体积.
一个口袋中有红球3个,白球4个.(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求摸2次恰好第2次中奖的概率;(Ⅱ)每次同时摸2个,并放回,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).
已知数列满足,数列满足.(Ⅰ)证明数列是等差数列并求数列的通项公式;(Ⅱ)求数列的前项和.