已知函数. (1)求函数在区间(为自然对数的底)上的最大值和最小值; (2)求证:在区间上,函数的图象在函数的图象的下方; (3)求证:≥ .
已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一点. (1)求证:平面EBD⊥平面SAC; (2)设SA=4,AB=2,求点A到平面SBD的距离;
如图所示,四棱锥P-ABCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60°,在四边形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2. (1)建立适当的坐标系,并写出点B,P的坐标; (2)求异面直线PA与BC所成角的余弦值; (3)若PB的中点为M,求证:平面AMC⊥平面PBC.
如图所示,在三棱锥P-ABC中,PA⊥平面ABC,AB=BC=CA=3,M为AB的中点,四点P、A、M、C都在球O的球面上. (1)证明:平面PAB⊥平面PCM; (2)证明:线段PC的中点为球O的球心
在矩形ABCD中,AB=1,BC=a,现沿AC折成二面角D-AC-B,使BD为异面直线AD、BC的公垂线. (1)求证:平面ABD⊥平面ABC; (2)当a为何值时,二面角D-AC-B为45°
如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点. (1)求证:CD⊥PD; (2)求证:EF∥平面PAD.