(本小题满分16分)已知函数且的图象经过点. (1)求函数的解析式; (2)设,用函数单调性的定义证明:函数在区间上单调递减;(3)求不等式的解集:.
已知关于x的不等式(其中)。 (1)当a=4时,求不等式的解集; (2)若不等式有解,求实数a的取值范围。
在极坐标系中,曲线,过点A(5,α)(α为锐角且)作平行于的直线,且与曲线L分别交于B,C两点。 (1)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线的普通方程; (2)求|BC|的长。
如图,相交于A、B两点,AB是的直径,过A点作的切线交于点E,并与BO1的延长线交于点P,PB分别与、交于C,D两点。 求证:(1)PA·PD=PE·PC; (2)AD=AE。
如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线l:x=﹣将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上. (1)求椭圆C的方程; (2)求的取值范围.
已知数列{an}中,a1=1,an>0,an+1是函数f(x)=x3+的极小值点. (1)证明数列{an}为等比数列,并求出通项公式an; (2)设bn=nan2,数列{bn}的前n项和为Sn,求证:.