已知函数.(1)若p=2,求曲线处的切线方程;(2)若函数在其定义域内是增函数,求正实数p的取值范围;(3)设函数,若在[1,e]上至少存在一点,使得成立,求实数p的取值范围.
已知f(x)=xlnx,g(x)=-x2+ax-2, (1)求函数f(x)在[t,t+1](t>0)上的最小值;(2)存在x0∈[1,e],使得f(x0)≥g(x0)成立,求实数a的取值范围;
已知函数f(x)=x3-3ax-1,a≠0(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
已知函数 (a∈R).(1)若在[1,e]上是增函数,求a的取值范围; (2)若a=1,1≤x≤e,证明:<.
已知函数f(x)=2x3+ax2+bx+3在x=-1和x=2处取得极值.