直线AB过抛物线x2=2py(p>0)的焦点F,并与其相交于A、B两点,Q是线段AB的中点,M是抛物线的准线与y轴的交点,O是坐标原点.(Ⅰ)求的取值范围;(Ⅱ)过A、B两点分别作此抛物线的切线,两切线相交于N点.求证:;(Ⅲ)若p是不为1的正整数,当,△ABN的面积的取值范围为[5,20]时,求该抛物线的方程.
在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?
已知函数 ⑴若为的极值点,求的值; ⑵若的图象在点处的切线方程为,求在区间上的最大值; ⑶当时,若在区间上不单调,求的取值范围.
设二次函数满足(+2)=(2-),且方程的两实根的平方和为10,的图象过点(0,3), ⑴求()的解析式. ⑵求在上的值域。
已知函数(a>1). (1)判断函数f (x)的奇偶性; (2)求f (x)的值域; (3)证明f (x)在(-∞,+∞)上是增函数.
某商场有奖销售中,购满100元商品得1张奖券,多购多得。每1000张奖券为一个开奖单位,其中含特等奖1个,一等奖10个,二等奖50个。设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C,求: (1)P(A),P(B),P(C); (2)1张奖券的中奖概率; (3)1张奖券不中特等奖且不中一等奖的概率。