已知抛物线、椭圆和双曲线都经过点,它们在轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(1)求这三条曲线的方程;(2)已知动直线过点,交抛物线于两点,是否存在垂直于轴的直线被以为直径的圆截得的弦长为定值?若存在,求出的方程;若不存在,说明理由.
设为正实数,函数. (1)若,求的取值范围;(2)求的最小值; (3)若,求不等式的解集.
已知等差数列的首项,公差,且分别是正数等比数列的项. (1)求数列与的通项公式; (2)设数列对任意均有成立,设的前项和为,求.
已知命题:复数,复数,是虚数;命题:关于的方程的两根之差的绝对值小于;若为真命题,求实数的取值范围.
(1)已知点和,过点的直线与过点的直线相交于点,设直线的斜率为,直线的斜率为,如果,求点的轨迹; (2)用正弦定理证明三角形外角平分线定理:如果在中,的外角平分线与边的延长线相交于点,则.
在中,角的对边分别为,且满足. (1)求角; (2)求的面积.