已知抛物线、椭圆和双曲线都经过点,它们在轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(1)求这三条曲线的方程;(2)已知动直线过点,交抛物线于两点,是否存在垂直于轴的直线被以为直径的圆截得的弦长为定值?若存在,求出的方程;若不存在,说明理由.
直线l过点M(2,1),且分别交x轴、y轴的正半轴于点A、B.点O是坐标原点. (1)当△ABO的面积最小时,求直线l的方程; (2)当最小时,求直线l的方程.
求经过点A(-2,2)且在第二象限与两个坐标轴围成的三角形面积最小时的直线的方程.
直线l经过点(3,2),且在两坐标轴上的截距相等,求直线l的方程.
求过点A(5,2),且在坐标轴上截距互为相反数的直线l的方程.
过点P(1,4)引一条直线,使它在两条坐标轴上的截距为正值,且它们的和最小,求这条直线的方程.