已知抛物线、椭圆和双曲线都经过点,它们在轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(1)求这三条曲线的方程;(2)已知动直线过点,交抛物线于两点,是否存在垂直于轴的直线被以为直径的圆截得的弦长为定值?若存在,求出的方程;若不存在,说明理由.
(本小题满分10分)记函数的定义域为A,的定义域为B. (1)求集合A; (2)若,求实数的取值范围.
已知对任意,都有 (为常数)并且当时, ⑴ 求证:是R上的减函数; ⑵ 若, 解关于m的不等式。
(本小题满分13分)设(为实常数)。 (1)当时,证明:不是奇函数; (2)设是奇函数,求与的值; (3)求(2)中函数的值域。
已知. (1)当,且有最小值2时,求的值; (2)当时,有恒成立,求实数的取值范围.
已知p: ,q: ,若是的必要不 充分条件,求实数m的取值范围。