已知(1+x)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n(n∈N*).(1)求a0及Sn=a1+a2+a3+…+an;(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.
已知关于x的不等式(其中)。(1)当a=4时,求不等式的解集;(2)若不等式有解,求实数a的取值范围。
在极坐标系中,曲线,过点A(5,α)(α为锐角且)作平行于的直线,且与曲线L分别交于B,C两点。(1)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线的普通方程;(2)求|BC|的长。
如图,相交于A、B两点,AB是的直径,过A点作的切线交于点E,并与BO1的延长线交于点P,PB分别与、交于C,D两点。求证:(1)PA·PD=PE·PC;(2)AD=AE。
如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线l:x=﹣将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.(1)求椭圆C的方程;(2)求的取值范围.
已知数列{an}中,a1=1,an>0,an+1是函数f(x)=x3+的极小值点.(1)证明数列{an}为等比数列,并求出通项公式an;(2)设bn=nan2,数列{bn}的前n项和为Sn,求证:.