设F1、F2分别为椭圆C: =1(a>b>0)的左、右两个焦点.(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.
(本小题满分10分) 在中,已知内角,边.设内角,周长为. (1)求函数的解析式和定义域; (2)求的最大值.
(本小题满分12分) 已知函数, (1)若,求的单调区间; (2)当时,求证:.
(本小题满分12分) 已知菱形的顶点在椭圆上,对角线所在直线的斜率为1. (1)当直线过点时,求直线的方程; (2)当时,求菱形面积的最大值.
(本小题满分12分) 如图,斜三棱柱ABC-A1B1C1的侧面AA1C1C是面积为的菱形,∠ACC1为锐角,侧面ABB1A1⊥侧面AA1C1C,且A1B=AB=AC=1. (1)求证:AA1⊥BC1; (2) 求三棱锥A1-ABC的体积.
(本小题满分12分) 在△ABC中,内角对边的边长分别是,已知,. (1)若△ABC的面积等于,求; (2)若,求△ABC的面积.