设F1、F2分别为椭圆C: =1(a>b>0)的左、右两个焦点.(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.
已知函数f(x)=-ax(a∈R,e为自然对数的底数). (1)讨论函数f(x)的单调性; (2)若a=1,函数g(x)=(x-m)f(x)-+x2+x在区间(0,+)上为增函数,求整数m 的最大值.
已知椭圆C:和直线L:="1," 椭圆的离心率,坐标原点到直线L的距离为。 (1)求椭圆的方程; (2)已知定点,若直线与椭圆C相交于M、N两点,试判断是否存在值,使以MN为直径的圆过定点E?若存在求出这个值,若不存在说明理由。
如图,在三棱柱ABC-A1B1C1中,已知侧面,AB=BC=1,BB1=2,∠BCC1=. (1) 求证:C1B⊥平面ABC; (2)设=l(0≤l≤1),且平面AB1E与BB1E所成的锐二面角 的大小为30°,试求l的值.
从天气网查询到衡水历史天气统计 (2011-01-01到2014-03-01)资料如下: 自2011-01-01到2014-03-01,衡水共出现:多云507天,晴356天,雨194天,雪36天,阴33天,其它2天,合计天数为:1128天。 本市朱先生在雨雪天的情况下,分别以的概率乘公交或打出租的方式上班(每天一次,且交通方式仅选一种),每天交通费用相应为2元或40元;在非雨雪天的情况下,他以90%的概率骑自行车上班,每天交通费用0元;另外以10%的概率打出租上班,每天交通费用20元。(以频率代替概率,保留两位小数.参考数据:) (1)求他某天打出租上班的概率; (2)将他每天上班所需的费用记为(单位:元),求的分布列及数学期望。
已知等差列的前n项和为 (1)求数列的通项公式: (2)若函数在处取得最大值,且最大值为a2,求函数的解析式。