(本小题满分12分)在平面直角坐标系中,已知三点,,,曲线C上任意—点满足:.(l)求曲线C的方程;(2)设点P是曲线C上的任意一点,过原点的直线L与曲线相交于M,N两点,若直线PM,PN的斜率都存在,并记为,.试探究的值是否与点P及直线L有关,并证明你的结论;(3)设曲线C与y轴交于D、E两点,点M (0,m)在线段DE上,点P在曲线C上运动.若当点P的坐标为(0,2)时,取得最小值,求实数m的取值范围.
(本小题满分12分)如图,四边形为矩形,平面ABE 为上的点,且平面, (1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.
(本小题满分12分)已知数列的前n项和为,,,等差数列中,,且,又、、成等比数列.(Ⅰ)求数列、的通项公式;(Ⅱ)求数列的前n项和Tn.
(本小题满分12分)设函数。(Ⅰ)求函数的最大值和最小正周期;(Ⅱ)设A,B,C为三个内角,若,且C为锐角,求。
(本小题满分10分)选修4-5:不等式选讲已知函数(Ⅰ)解关于的不等式(Ⅱ)若函数的图象恒在函数的图象上方,求实数的取值范围。
(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C1的参数方程为为参数),曲线C2的参数方程为为参数),且曲线C1与C2相交于A,B两点。(Ⅰ)求C1,C2的普通方程;(Ⅱ)若点,求的面积。