已知关于的一元二次方程.(1)试说明无论取何值时,这个方程一定有实数根;(2)已知等腰的底边,若两腰、恰好是这个方程的两个根,求的周长.
有一道练习题:对于式子先化简,后求值,其中.小明的解法如下:====.小明的解法对吗?如果不对,请改正.
解方程:(1) (2)
如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题: (1)当t为何值时,PQ∥BC. (2)设△AQP面积为S(单位:cm2),求S与t的函数关系式 (3)是否存在某时刻t,使四边形BPQC的面积为△ABC面积的三分之二?若存在,求出此时t的值;若不存在,请说明理由. (4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?
【探究发现】 按图中方式将大小不同的两个正方形放在一起,分别求出阴影部分(⊿ACF)的面积。(单位:厘米,阴影部分的面积依次用S1、S2、S3表示) 1.S1=cm2; S2=cm2; S3=cm2. 2.归纳总结你的发现: 【推理反思】 按图中方式将大小不同的两个正方形放在一起,设小正方形的边长是bcm,大正方形的边长是acm,求:阴影部分(⊿ACF)的面积。 【应用拓展】 1.按上图方式将大小不同的两个正方形放在一起,若大正方形的面积是80cm2,则图中阴影三角形的面积是cm2. 2.如图(1),C是线段AB上任意一点,分别以AC、BC为边在线段AB同侧构造等边三角形⊿ACD和等边三角形⊿CBE,若⊿CBE的边长是1cm,则图中阴影三角形的面积是cm2. 3.如图(2),菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是 (1)(2)
如图,在□ABDC中,分别取AC、BD的中点E和F,连接BE、CF,过点A作AP∥BC,交DC的延长线于点P. (1)求证:△ABE≌△DCF; (2)当∠P满足什么条件时,四边形BECF是菱形?证明你的结论.