在边长为 1 个单位长度的正方形网格中建立如图所示的平面直角坐标系, ΔABC 的顶点都在格点上, 请解答下列问题:
(1) 作出 ΔABC 向左平移 4 个单位长度后得到的△ A 1 B 1 C 1 ,并写出点 C 1 的坐标;
(2) 作出 ΔABC 关于原点 O 对称的△ A 2 B 2 C 2 ,并写出点 C 2 的坐标;
(3) 已知 ΔABC 关于直线 l 对称的△ A 3 B 3 C 3 的顶点 A 3 的坐标为 ( − 4 , − 2 ) ,请直接写出直线 l 的函数解析式 .
如图,直线、相交于,,且的度数是 的4倍. 求:(1)、的度数; (2)的度数.
如图,已知:∠1=118°,∠2=62°. (1)试判断与是否平行,并说明理由; (2)∠3=125°,求:∠4的度数.
已知关于、方程组的解满足,求的值.
解方程组:
在平面直角坐标系xOy中,抛物线y=x2+bx+c经过A(2,0)、B(4,0)两点,直线交y轴于点C,且过点D(8,m). (1)求抛物线的解析式; (2)在x轴上找一点P,使CP+DP的值最小,求出点P的坐标; (3)将抛物线y=x2+bx+c左右平移,记平移后点A的对应点为A′,点B的对应点为B′,当四边形A′B′DC的周长最小时,求抛物线的解析式及此时四边形A′B′DC周长的最小值.