已知:一次函数的图象与正比例函数的图象相交于点A(a,1).(1)求a的值及正比例函数的解析式;(2)点P在坐标轴上(不与点O重合),若PA=OA,直接写出P点的坐标;(3)直线与一次函数的图象交于点B,与正比例函数图象交于点C,若△ABC的面积记为S,求S关于m的函数关系式(写出自变量的取值范围).
如图(1),由直角三角形边角关系,可将三角形面积公式变形, 即: =AB·CD, 在Rt中,,=bc·sin∠A. 即 三角形的面积等于两边之长与夹角正弦之积的一半. 如图(2),在ABC中,CD⊥AB于D,∠ACD=α, ∠DCB=β. ∵ , 由公式①,得AC·BC·sin(α+β)= AC·CD·sinα+BC·CD·sinβ, 即 AC·BC·sin(α+β)= AC·CD·sinα+BC·CD·sinβ 请你利用直角三角形边角关系,消去②中的AC、BC、CD,只用的正弦或余弦函数表示(直接写出结果).(1)______________________________________________________________(2)利用这个结果计算:=_________________________
如图,在平面直角坐标系中,点O为坐标原点,以点A(0,-3)为圆心,5为半径作圆A,交x轴于B、C两点,交y轴于点D、E两点.(1)如果一个二次函数图象经过B、C、D三点,求这个二次函数的解析式;(2)设点P的坐标为(m,0)(m>5),过点P作x轴交(1)中的抛物线于点Q,当以为顶点的三角形与相似时,求点P的坐标.
已知在四边形ABCD中,(1)求的长;(2)求的长.
已知抛物线y=ax+bx+c与轴交于两点,若两点的横坐标分别是一元二次方程的两个实数根,与轴交于点(0,3),(1)求抛物线的解析式;(2)在此抛物线上求点,使.
今年北京市大规模加固中小学校舍,房山某中学教学楼的后面靠近一座山坡,坡面上是一块平地,如图所示.,斜坡米,坡度i=,为防止山体滑坡,保障学生安全,学校决定不仅加固教学楼,还对山坡进行改造.经地质人员勘测,当坡角不超过时,可确保山体不滑坡,改造时保持坡脚不动,从坡顶沿削进到处,问至少是多少米.(结果保留根号)