指出以下各情况哪些适宜用全面调查,哪些适宜作抽样调查并简要说明理由.(1)某棉布厂了解一批棉花的纤维长度的情况;(2)一个水库养了某种鱼10万条,调查每条鱼的平均重量问题;(3)了解一个跳高训练班的训练成绩是否达到了预定的训练目标.
如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为多少米?(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠DHM)为30°,点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?
如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.(1)求证:△ABF∽△DFE(2)若△BEF也与△ABF相似,请求出的值 .
如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,视为无效,重新转动一次转盘),此过程称为一次操作.(1)求事件“一次操作,得到的数恰好是0”发生的概率;(2)用树状图或列表法,求事件“两次操作,第一次操作得到的数与第二次操作得到的数绝对值相等”发生的概率.
已知图中的曲线是函数 (m为常数)图象的一支.(1)求常数m的取值范围;(2)若该函数的图象与正比例函数图象在第一象限的交点为A(2,n),求点A的坐标及反比例函数的解析式.
(1)已知,求的值.(2)已知是锐角△ABC的三个内角,且满足,求的度数.