已知是等差数列,其n项和为, ,(Ⅰ)求及;(Ⅱ)令,求数列的前n项和
将一颗正方体的骰子先后抛掷2次(每个面朝上等可能),记下向上的点数,求: (1)求两点数之和为5的概率; (2)以第一次向上点数为横坐标,第二次向上的点数为纵坐标的点在圆的内部的概率.
已知函数.(为常数) (1)当时,①求的单调增区间;②试比较与的大小; (2),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.
已知椭圆的右焦点为,离心率,是椭圆上的两动点,动点满足(其中实数为常数). (1)求椭圆标准方程; (2)当,且直线过点且垂直于轴时,求过三点的外接圆方程; (3)若直线与的斜率乘积,问是否存在常数,使得动点满足,其中,若存在求出的值,若不存在,请说明理由.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中, 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求的值; (2)若该商品的成本为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.
设,若成等差数列. (1) 求展开式的中间项; (2)求展开式中所有含奇次幂的系数和.