一个口袋中有个白球和个红球且,每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.(Ⅰ)试用含的代数式表示一次摸球中奖的概率;(Ⅱ)若,求三次摸球恰有一次中奖的概率;(Ⅲ)记三次摸球恰有一次中奖的概率为,当为何值时,取最大值.
设函数在,处取得极值,且. (Ⅰ)若,求的值,并求的单调区间; (Ⅱ)若,求的取值范围.
(13分) 在平面直角坐标系xOy中,抛物线上异于坐标原点O的两不同动点A、B满足(如图所示). (Ⅰ)求得重心G(即三角形三条中线的交点)的轨迹方程; (Ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
(1)解不等式f(x)>1;
已知某精密仪器生产总成本C(单位:万元)与月产量x(单位:台)的函数关系为,月最高产量为15台,出厂单价p(单位:万元)与月产量x的函数关系为: (1)求月利润L与产量x的函数关系式; (2)求月产量x为何值时,月利润最大?