已知抛物线的准线为,焦点为F,的圆心在轴的正半轴上,且与轴相切,过原点O作倾斜角为的直线,交于点A,交于另一点B,且AO=OB=2.(1)求和抛物线C的方程;(2)若P为抛物线C上的动点,求的最小值;(3)过上的动点Q向作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.
如图,倾斜角为的直线与单位圆在第一象限的部分交于点,单位圆与坐标轴交于点,点,与轴交于点,与轴交于点,设 (1)用角表示点、点的坐标; (2)求的最小值.
求出所有的函数使得对于所有,都能被整除.
如图,的内心为,分别是的中点,,内切圆分别与边相切于;证明:三线共点.
给定两个数列,满足,, .证明对于任意的自然数n,都存在自然数,使得.
设函数, (I)求函数在上的最大值与最小值; (II)若实数使得对任意恒成立,求的值.