在某次测验中,有6位同学的平均成绩为75分.用表示编号为的同学所得成绩,且前5位同学的成绩如下:
(1)求第6位同学成绩,及这6位同学成绩的标准差;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间中的概率.
已知函数f(x)=(其中A>0,)的图象如图所示。 (Ⅰ)求A,w及j的值; (Ⅱ)若tana=2,求的值。
已知数列的前n项和为,,,等差数列中,且,又、、成等比数列. (Ⅰ)求数列、的通项公式; (Ⅱ)求数列的前n项和.
已知函数. (Ⅰ)当a=0时,求函数f(x)的图像在点A(1,f(1))处的切线方程; (Ⅱ)若f(x)在R上单调,求a的取值范围; (Ⅲ)当时,求函数f(x)的极小值。
在某次抽奖活动中,一个口袋里装有5个白球和5个黑球,所有球除颜色外无任何不同,每次从中摸出2个球,观察颜色后放回,若为同色,则中奖。 (Ⅰ)求仅一次摸球中奖的概率; (Ⅱ)求连续2次摸球,恰有一次不中奖的概率; (Ⅲ)记连续3次摸球中奖的次数为,求的分布列。
在正四棱柱中,E,F分别是的中点,G为上任一点,EC与底面ABCD所成角的正切值是4. (Ⅰ)求证AGEF; (Ⅱ)确定点G的位置,使AG面CEF,并说明理由; (Ⅲ)求二面角的余弦值。