给定椭圆: ,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,且其短轴上的一个端点到的距离为.(Ⅰ)求椭圆的方程和其“准圆”方程;(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线,使得与椭圆都只有一个交点,试判断是否垂直,并说明理由.
设等差数列的前n项和为;设,问是否可能为一与n无关的常数?若不存在,说明理由.若存在,求出所有这样的数列的通项公式.
已知数列成等差数列,表示它的前项和,且,.⑴求数列的通项公式;⑵数列中,从第几项开始(含此项)以后各项均为负数?
、已知数列的前项和满足.(1) 写出数列的前三项;(2) 求证数列为等比数列,并求出的通项公式.
设数列{an}是公差不为零的等差数列,Sn是数列{an}的前n项和,且=9S2,S4=4S2,求数列的通项公式.
函数的图像一部分如图所示,(1)求此函数解析式;(2)将(1)中的函数图像如何变化才能得到函数图像。