(本小题满分12分)某市的教育研究机构对全市高三学生进行综合素质测试,随机抽取了部分学生的成绩,得到如图所示的成绩频率分布直方图.(I )估计全市学生综合素质成绩的平均值;(II)若综合素质成绩排名前5名中,其中1人为某校的学生会主席,从这5人中推荐3人参加自主招生考试,试求这3人中含该学生会主席的概率。
选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为(为参数),直线与曲线分别交于两点.(1)写出曲线的平面直角坐标方程和直线的普通方程;(2)若成等比数列,求实数的值.
选修4-1:几何证明选讲如图,直线为圆的切线,切点为,点在圆上,的角平分线交圆于点垂直交圆于点.(1)证明:(2)设圆的半径为1,,延长交于点,求外接圆的半径.
已知函数.(1)求的单调区间;(2)若,且对任意恒成立,求的最大值;(3)对于在区间上任意一个常数,是否存在正数,使得成立?请说明理由.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)设,过点作与轴不重合的直线交椭圆于两点,连接分别交直线于两点,若直线的斜率分别为,试问:是否为定值?若是,求出该定值,若不是,请说明理由.
心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30,女20),给所有同学几何体和代数题各一题,让各位同学自由选择一道题进行解答,选题情况如下表(单位:人)
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关? (2)经过多次测试后,甲每次解答一道几何题所用的时间在5-7分钟,乙每次解答一道几何题所用的时间在6-8分钟,现甲,乙各解同一道几何题,求乙比甲先解答完的概率; (3)现从选择做几何题的8名女生中任意抽取两人对她们的大题情况进行全程研究,记甲、乙两女生被抽到的人数为,求的分布列及数学期望. 附表及公式: