数列中,,,数列是公比为()的等比数列。(Ⅰ)求使成立的的取值范围;(Ⅱ)求数列的前项的和.
已知的展开式中,第项的系数与第项的系数之比是10:1,求展开式中,(1)含的项;(2)系数最大的项.
设不等边三角形ABC的外心与重心分别为M、G,若A(-1,0),B(1,0)且MG//AB.(Ⅰ)求三角形ABC顶点C的轨迹方程;(Ⅱ)设顶点C的轨迹为D,已知直线过点(0,1)并且与曲线D交于P、N两点,若O为坐标原点,满足OP⊥ON,求直线的方程.
设函数f(x)=lnx,g(x)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.(Ⅰ)求a、b的值; (Ⅱ)设x>0,试比较f(x)与g(x)的大小.
如图,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四边形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分别为CE、AB的中点.(Ⅰ)证明:OD//平面ABC;(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.
为了了解某市工人开展体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂.(Ⅰ)从A,B,C区中分别抽取的工厂个数;(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,计算这2个工厂中至少有1个来自A区的概率.