已知 A , B , C 是椭圆 W : x 2 4 + y 2 = 1 上的三个点, O 是坐标原点. (I)当点 B 是 W 的右顶点,且四边形 O A B C 为菱形时,求此菱形的面积. (II)当点 B 不是 W 的顶点时,判断四边形 O A B C 是否可能为菱形,并说明理由.
二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1)求矩阵M;(2)设直线l在变换M作用下得到了直线m:x-y=4,求l的方程.
二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l在变换M作用下得到了直线m:2x-y=4,求l的方程.
已知矩阵M=,向量α=,β=.(1)求向量3α+β在TM作用下的象;(2)求向量4Mα-5Mβ.
如图所示,四边形ABCD和四边形AB′C′D分别是矩形和平行四边形,其中各点的坐标分别为A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求将四边形ABCD变成四边形AB′C′D的变换矩阵M.
在线性变换=下,直线x+y=k(k为常数)上的所有点都变为一个点,求此点坐标.