(本小题满分10分)选修4-1:几何证明选讲如图,AB是的直径,AC是弦,直线CE和切于点C, AD丄CE,垂足为D.(I) 求证:AC平分;(II) 若AB=4AD,求的大小.
已知向量,,函数.(1)求函数的最小正周期与值域;(2)已知,,分别为内角, ,的对边,其中为锐角,,,且,求,和的面积.
已知函数,.(1)求的单调区间;(2)设函数,若存在,对任意的,总有成立,求实数的取值范围.
两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y.统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)将y表示成x的函数;(2)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。
已知定义域为的函数是奇函数.(1)求的值;(2)判断函数的单调性,并求其值域;(3)解关于的不等式.
已知:且,(1)求的取值范围;(2)求函数的最大值和最小值。