如图,圆锥顶点为 P .底面圆心为 O ,其母线与底面所成的角为 22 . 5 ° . A B 和 C D 是底面圆 O 上的两条平行的弦,轴 O P 与平面 P C D 所成的角为 60 ° ,
(Ⅰ)证明:平面 P A B 与平面 P C D 的交线平行于底面; (Ⅱ)求 cos ∠ C O D .
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=,N为AB上一点,AB=4AN, M,S分别为PB,BC的中点. (Ⅰ)证明:CM⊥SN; (Ⅱ)求SN与平面CMN所成角的大小.
(本题满分14分)已知:抛物线的焦点坐标为,它与过点的直线相交于A,B两点,O为坐标原点。 (1)求值; (2)若OA和OB的斜率之和为1,求直线的方程。
(本题满分12分)给出命题方程表示焦点在轴上的椭圆;命题曲线与轴交于不同的两点. (1)在命题中,求a的取值范围; (2)如果命题“”为真,“”为假,求实数的取值范围.
已知 (1)若,求实数的取值范围; (2)若,求实数的取值范围.
已知函数. (1)判断f(x)的奇偶性,并说明理由; (2)若方程有解,求m的取值范围;