如图,圆锥顶点为 P .底面圆心为 O ,其母线与底面所成的角为 22 . 5 ° . A B 和 C D 是底面圆 O 上的两条平行的弦,轴 O P 与平面 P C D 所成的角为 60 ° ,
(Ⅰ)证明:平面 P A B 与平面 P C D 的交线平行于底面; (Ⅱ)求 cos ∠ C O D .
已知函数其中为参数. (1)记函数,讨论函数的单调性; (2)若曲线与轴正半轴有交点且交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有.
已知正项等比数列,首项,前项和为,且,,成等差数列. (1)求数列的通项公式; (2)求数列的前项和.
已知四棱锥中平面,点在棱上,且,底面为直角梯形,分别是的中点. (1)求证:// 平面; (2)求截面与底面所成二面角的大小.
设锐角△的三内角的对边分别为 . (1)设向量,,若与共线,求角的大小. (2)若,,且△的面积小于,求角的取值范围.
已知函数. (1)若,求实数的取值范围; (2)求的最大值.