如图,圆锥顶点为 P .底面圆心为 O ,其母线与底面所成的角为 22 . 5 ° . A B 和 C D 是底面圆 O 上的两条平行的弦,轴 O P 与平面 P C D 所成的角为 60 ° ,
(Ⅰ)证明:平面 P A B 与平面 P C D 的交线平行于底面; (Ⅱ)求 cos ∠ C O D .
已知是一个公差大于0的等差数列,且满足.(1)求数列的通项公式;(2)若数列和数列满足等式:(n为正整数)求数列的前n项和.
已知函数.(1)解不等式:;(2)当时, 不等式恒成立,求实数的取值范围.
已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,直线l的参数方程是(为参数).(1)求曲线的直角坐标方程;(2)设直线l与曲线交于、两点,点的直角坐标为(2,1),若,求直线l的普通方程.
二阶矩阵A,B对应的变换对圆的区域作用结果如图所示.(1)请写出一个满足条件的矩阵A,B;(2)利用(1)的结果,计算C=BA,并求出曲线在矩阵C对应的变换作用下的曲线方程.
已知函数(其中),为f(x)的导函数.(1)求证:曲线y=在点(1,)处的切线不过点(2,0);(2)若在区间中存在,使得,求的取值范围;(3)若,试证明:对任意,恒成立.