(本小题满分12分)如图,在四棱柱中,面,底面是直角梯形,,,,异面直线与所成角为.(1)求证:平面;(2)求直线与平面所成角的正弦值.
已知,若在区间上的最大值,最小值为,记.(1)求的解析表达式;(2)若对一切都有成立,求实数的取值范围.
已知两点且点P使成等差数列.(1)若P点的轨迹曲线为C,求曲线C的方程;(2)从定点出发向曲线C引两条切线,求两切线方程和切点连线的直线方程。
已知锐角中,三个内角为A、B、C,两向量,。若与是共线向量.(I)求的大小;(II)求函数取最大值时,的大小.
(本小题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。已知函数,当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;若函数在上是以3为上界函数值,求实数的取值范围;若,求函数在上的上界T的取值范围。
(本小题满分12分)设函数化简函数式并求函数的定义域;解不等式