(理)已知椭圆的离心率为,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.(1)求椭圆C1的方程;(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;(3)设C2与x轴交于点Q,不同的两点R、S在C2上,且满足,求的取值范围.
已知,函数,时,,求常数,的值.
命题:关于的不等式,对一切恒成立,命题:函数是增函数,若为真,为假,求实数的取值范围.
设0≤x≤2,求函数y=的最大值和最小值.
沪杭高速公路全长千米.假设某汽车从上海莘庄镇进入该高速公路后以不低于千米/时且不高于千米/时的时速匀速行驶到杭州.已知该汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度(千米/时)的平方成正比,比例系数为;固定部分为200元. (1)把全程运输成本(元)表示为速度(千米/时)的函数,并指出这个函数的定义域; (2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本为多少元?
设的定义域是,且对任意不为零的实数x都满足=.已知当x>0时 (1)求当x<0时,的解析式(2)解不等式.