本小题满分12分)如图,在四棱锥P-ABCD中,PB⊥底面,CD⊥PD,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,点E在棱PA上,且PE=2EA。(1)求异面直线PA与CD所成的角;(2)求证:PC∥平面EBD;(3)求二面角A-BE-D的大小。
如图,直三棱柱A1B1C1—ABC中,C1C=CB=CA=2,AC⊥CB. D、E分别为棱C1C、B1C1的中点. 求正切值;
已知数列的前n项和为,点在直线上.数列满足: ,且,前9项和为153. 求数列{bn}的通项公式;
已知f(x)=定义在区间[-1,1]上,设x1,x2∈[-1,1]且x1≠x2. 求证: | f(x1)-f(x2)|≤| x1-x2|
已知二阶矩阵A的属于特征值-1的一个特征向量为,属于特征值3的一个特征向量为,求矩阵A.
)函数. 求证:不等式对于恒成立