(本小题满分12分)如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=,E、F分别为线段PD和BC的中点.(Ⅰ) 求证:CE∥平面PAF;(Ⅱ) 在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.
在中,角所对的边分别为.已知. (Ⅰ)若. 求的面积;(Ⅱ)求的取值范围
已知,解关于的不等式.
已知满足=0,是否存在常数a,b,c使 恒成立?如存在,则求a,b,c的值.
已知,函数(其中为自然对数的底数). (Ⅰ)求函数在区间上的最小值; (Ⅱ)设数列的通项,是前项和,证明:.
设动点到定点的距离比到轴的距离大.记点的轨迹为曲线C. (Ⅰ)求点的轨迹方程; (Ⅱ)设圆M过,且圆心M在P的轨迹上,是圆M 在轴的截得的弦,当M 运动时弦长是否为定值?说明理由; (Ⅲ)过作互相垂直的两直线交曲线C于G、H、R、S,求四边形面的最小值.