已知,函数(其中为自然对数的底数).(Ⅰ)求函数在区间上的最小值;(Ⅱ)设数列的通项,是前项和,证明:.
(本题满分15分) 如图,四边形中,为正三角形,,,与交于点.将沿边折起,使点至点,已知与平面所成的角为,且点在平面内的射影落在内.(Ⅰ)求证:平面;(Ⅱ)若已知二面角的余弦值为,求的大小.
已知数列的前项和为,,若数列是公比为的等比数列. (Ⅰ)求数列的通项公式;(Ⅱ)设,,求数列的前项和.
已知函数.⑴求函数的最小值和最小正周期;⑵已知内角的对边分别为,且,若向量与共线,求的值.
(本题13分)已知函数。(Ⅰ)若,试判断并证明的单调性;(Ⅱ)若函数在上单调,且存在使成立,求的取值范围;(Ⅲ)当时,求函数的最大值的表达式。
(本题9分)已知函数。(Ⅰ)若在上的最小值是,试解不等式;(Ⅱ)若在上单调递增,试求实数的取值范围。