如图,已知抛物线上横坐标为4的点到焦点的距离为5.(Ⅰ)求抛物线C的方程;(Ⅱ)设直线与抛物线C交于两点,,且(a为正常数).过弦AB的中点M作平行于x轴的直线交抛物线C于点D,连结AD、BD得到.(i)求实数a,b,k满足的等量关系;(ii)的面积是否为定值?若为定值,求出此定值;若不是定值,请说明理由.
如图,四棱锥中,底面为平行四边形,,,底面(1)证明:;(2)若,求二面角余弦值.
已知函数.(1)若,讨论函数在区间上的单调性;(2)若且,对任意的,试比较与的大小.
已知椭圆的左焦点为,左、右顶点分别为,过点且倾斜角为的直线交椭圆于两点,椭圆的离心率为,.(1)求椭圆的方程;(2)若是椭圆上不同两点,轴,圆过点,且椭圆上任意一点都不在圆内,则称圆为该椭圆的内切圆.问椭圆是否存在过点的内切圆?若存在,求出点的坐标;若不存在,说明理由.
如图已知中,,点是边上的动点,动点满足(点按逆时针方向排列).(1)若,求的长;(2)若,求△面积的最大值.
如图,已知正方形的边长为,点分别在边上,,现将△沿线段折起到△位置,使得.(1)求五棱锥的体积;(2)在线段上是否存在一点,使得平面?若存在,求;若不存在,说明理由.