如图,在长方体AC1中,AB=BC=2,,点E、F分别是面A1C1、面BC1的中心.(1)求证:BE//平面D1AC;(2)求证:AF⊥BE;(3)求异面直线AF与BD所成角的余弦值。
已知正方体中,E,F分别是,CD的中点 (1)证明: (2)证明:平面AED⊥ (3)设,求三棱锥的体积。
已知过点A(0,1)且斜率为的直线与圆C:相交于M、N两点。 (1)求实数的取值范围 (2)求证:为定值 (3)若O为坐标原点,且,求K值。
如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点。 求证:(1)直线EF∥面ACD; (2)平面EFC⊥面BCD。
已知圆C:,直线。 (1)当为何值时,直线与圆C相切; (2)当直线与圆C相交于A、B两点,且AB=时,求直线的方程。
已知命题P:任意“,”,命题q:“存在”若“p或q”为真,“p且q”为假命题,求实数的取值范围。