(本小题满分8分) 某车间生产某机器的两种配件A和B,生产配件A成本费y与该车间的工人人数x成反比,而生产配件B成本费y与该车间的工人人数x成正比,如果该车间的工人人数为10人时,这两项费用y和y分别为2万元和8万元,那么要使这两项费用之和最小,该车间的工人人数x应为多少?
如图,在四棱锥中,底面是正方形,侧棱⊥底面,,是的中点,作交于点. (1)证明平面; (2)证明平面.
.四边形与都是边长为的正方形,点是的中点,平面. (1)求证:平面平面; (2)求三棱锥的体积.
在直三棱柱中,,,求: (1)异面直线与所成角的余弦值; (2)直线到平面的距离.
已知函数,函数是区间上的减函数. (1)求的最大值; (2)若恒成立,求的取值范围; (3)讨论关于的方程的根的个数.
定义在定义域内的函数,若对任意的都有,则称函数为“妈祖函数”,否则称“非妈祖函数”.试问函数,()是否为“妈祖函数”?如果是,请给出证明;如果不是,请说明理由.