如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,AB=2,点D1、D分别是棱B1C1、BC的中点. (Ⅰ)求证:A1D1⊥平面BB1C1C; (Ⅱ)求证:AB1∥平面CA1D1; (Ⅲ)求多面体A1B1D1-CAD的体积.
(本小题满分10分) 已知函数. (1)求函数的定义域;(2)判断的奇偶性; (3)方程是否有根?如果有根,请求出一个长度为的区间,使;如果没有,请说明理由?(注:区间的长度).
(本小题12分)已知二次函数满足且. (1)求的解析式; (2) 当时,不等式:恒成立,求实数的范围. (3)设,求的最大值;
(本小题10分)已知函数=. (1)用定义证明函数在(-∞,+∞)上为减函数; (2)若x[1,2],求函数的值域; (3)若=,且当x[1,2]时恒成立,求实数的取值范围.
(本小题8分)经过调查发现,某种新产品在投放市场的30天中,前20天其价格直线上升,后10天价格呈直线下降趋势。现抽取其中4天的价格如下表所示:
(1)写出价格关于时间的函数表达式(表示投放市场的第天) (2)若销售量与时间的函数关系式为:,问该产品投放市场第几天,日销售额最高?
(本题8分)全集U=R,若集合,, 则(结果用区间表示) (1)求; (2)若集合C=,,求的取值范围;