袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球。(1)试问:一共有多少种不同的结果?请列出所有可能的结果; (2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。
(本小题满分14分)已知0是坐标原点,,(I)的单调递增区间; (II)若f(x)的定义域为,值域为[2,5],求m的值。
本小题满分14分) 在△ABC中,角A,B,C所对的边分别为a,b,c,(I)求的值;(II)若的值.
、(本小题满分16分) 已知R,函数R,为自然对数的底数)。 (1)当时,求函数的单调递增区间; (2)若函数在上单调递增,求的取值范围; (3)函数是否为R上的单调函数,若是,求出的取值范围;若不是,请说明理由。
、(本小题满分14分) 设函数,其中实常数。(1)求函数的定义域和值域;(2)试探究函数的奇偶性与单调性,并证明你的结论。
、(本小题满分14分) 已知函数(1)画出函数在的简图;(2)写出函数的最小正周期和单调递增区间;并求:当x为何值时,函数有最大值?最大值是多少?(3)若x是△ABC的一个内角,且y2=1,试判断△ABC的形状。