如图,△ABC的顶点在格点上,且点A(-5,-1),点C(-1,-2).(1)以原点O为旋转中心,将△ABC绕点O逆时针旋转90°得到△. 请在图中画出△,并写出点A的对称点的坐标;(2)以原点O为位似中心,位似比为2,在第一象限内将△ABC放大,画出放大后的图形△.
在平面直角坐标系中,将坐标是(0,4),(1,0),(3,0),(4,4)的点用线段依次连接起来形成一个图案. (1)在下列坐标系中画出这个图案;(2)若将上述各点的横坐标保持不变,纵坐标分别乘以-1,再将所得的各个点线段依次连接起来,所得的图案与原图案相比有什么变化?
如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一个△ABC和一点O,△ABC的顶点和点O均与小正方形的顶点重合.(1)在方格纸中,将△ABC向下平移5个单位长度得到△A1B1C1,请画出△A1B1C1(2)在方格纸中,将△ABC绕点O顺时针旋转180°得到△A2B2C2,请画出△A2B2C2.
一个多边形的每个外角都等于40°,求这个多边形的内角和.
.汽车从A地开往B地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B地.求AB两地的距离及原计划行驶的时间.
某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?