如图,△ABC的顶点在格点上,且点A(-5,-1),点C(-1,-2).(1)以原点O为旋转中心,将△ABC绕点O逆时针旋转90°得到△. 请在图中画出△,并写出点A的对称点的坐标;(2)以原点O为位似中心,位似比为2,在第一象限内将△ABC放大,画出放大后的图形△.
某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件. (1)求出每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式; (2)求销售单价为多少元时,该商品每天的销售利润最大; (3)商场的营销部在调控价格方面,提出了A,B两种营销方案. 方案A:每件商品涨价不超过5元; 方案B:每件商品的利润至少为16元. 请比较哪种方案的最大利润更高,并说明理由.
如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,连接AE交BC于点F,∠ACB=2∠EAB. (1)求证:AC是⊙O的切线; (2)若cosC=,AC=6,求BF的长.
商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同. (1)若他去买一瓶饮料,则他买到汁的概率是 ;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.
如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),将△ABC绕原点O旋转180度得到△A1B1C1.平移△ABC得到△A2B2C2,使点A移动到点A2(0,2),结合所给的平面直角坐标系解答下列问题: (1)请画出△A1B1C1; (2)请直接写出点B2、C2的坐标; (3)在△ABC、△A1B1C1、△A2B2C2中 ,△A2B2C2与 成中心对称,其对称中心的坐标为 .
如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF. 求证:AB=DE.