如图,△ABC的顶点在格点上,且点A(-5,-1),点C(-1,-2).(1)以原点O为旋转中心,将△ABC绕点O逆时针旋转90°得到△. 请在图中画出△,并写出点A的对称点的坐标;(2)以原点O为位似中心,位似比为2,在第一象限内将△ABC放大,画出放大后的图形△.
(本小题满分14分)如图所示,抛物线经过原点,与轴交于另一点,直线与两坐标轴分别交于、两点,与抛物线交于、两点.(1)求直线与抛物线的解析式;(2)若抛物线在轴上方的部分有一动点,求的面积最大值;(3)若动点保持(2)中的运动路线,问是否存在点,使得的面积等于面积的?若存在,请求出点的坐标;若不存在,请说明理由.
(本小题满分12分)如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN ∥OB交CD于N.⑴求证:MN是⊙O的切线;⑵当0B=6cm,OC=8cm时,求⊙O的半径及图中阴影部分的面积.
(本小题满分12分)甲、乙、丙三个人准备打羽毛球,他们约定用“抛硬币”的方式来确定哪两个人先上场,三人手中各持有一枚质地均匀的硬币,同时将手中硬币抛落到水平地面为一个回合.落地后,三枚硬币中,恰有两枚正面向上或反面向上的这两枚硬币持有人先上场;若三枚硬币均为正面向上或反面向上,属于不能确定.(1)请你画出表示“抛硬币”一个回合所有可能出现的结果的树状图;(2)求一个回合能确定两人先上场的概率.
(本小题满分12分)如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).⑴ 画出关于点O成中心对称的,并写出点B1的坐标;⑵ 求出以点B1为顶点,并经过点B的二次函数关系式.
(本小题满分10分)元旦期间,商场中原价为 100元的某种商品经过两次连续降价后以每件81元出售,设这种商品每次降价的百分率相同,求这个百分率.