一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4。现从盒子中随机抽取卡片.(I)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;(II)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.
(本题6分)某学校组织课外活动小组,其中三个小组的人员分布如下表(每名同学只参加一个小组):
学校要对这三个小组的活动效果进行抽样调查,按分层抽样的方法从小组成员中抽取6人,结果摄影小组被抽出3人。 (Ⅰ)求a的值; (Ⅱ)从书法小组的人中,随机选出3人参加书法比赛,求这3人中初、高中学生都有的概率。
(本题6分)已知函数的图象过点P(0,2),且在点处的切线方程为。 (Ⅰ)求函数的解析式; (Ⅱ)求函数的单调区间。
(本题9分)设函数。 (1)求的值; (2)求的最小值及取最小值时的集合;(3)求的单调递增区间。
(本题8分)已知等差数列满足:,的前项和为。 (1)求及; (2)令(其中为常数,且),求证数列为等比数列。
(本题8分)在中,角所对的边分别为,已知。 (1)求的值; (2)当,时,求及的长。