(本小题满分14分)已知函数是奇函数.(1)求实数的值;(2)判断函数在上的单调性,并给出证明;(3)当时,函数的值域是,求实数与的值。
(本小题满分14分)已知函数,,设曲线在点处的切线方程为. 如果对任意的,均有:①当时,;②当时,;③当时,,则称为函数的一个“ʃ-点”.(Ⅰ)判断是否是下列函数的“ʃ-点”:①; ②.(只需写出结论)(Ⅱ)设函数.(ⅰ)若,证明:是函数的一个“ʃ-点”;(ⅱ)若函数存在“ʃ-点”,直接写出的取值范围.
(本小题满分13分)已知数列满足,为其前项和,且.(Ⅰ)求的值;(Ⅱ)求证:;(Ⅲ)判断数列是否为等差数列,并说明理由.
(本小题满分14分)已知函数.(Ⅰ)若函数的图象关于点对称,直接写出的值;(Ⅱ)求函数的单调递减区间;(Ⅲ)若在区间上恒成立,求的最大值.
(本小题满分13分)如图所示,在四边形中,,且.(Ⅰ)求△的面积;(Ⅱ)若,求的长.
(本小题满分13分)设数列是首项为,公差为的等差数列,且是等比数列的前三项.(Ⅰ)求的通项公式;(Ⅱ)求数列的前项和.