(本小题满分14分)已知函数,,设曲线在点处的切线方程为. 如果对任意的,均有:①当时,;②当时,;③当时,,则称为函数的一个“ʃ-点”.(Ⅰ)判断是否是下列函数的“ʃ-点”:①; ②.(只需写出结论)(Ⅱ)设函数.(ⅰ)若,证明:是函数的一个“ʃ-点”;(ⅱ)若函数存在“ʃ-点”,直接写出的取值范围.
已知向量,,实数为大于零的常数,函数,,且函数的最大值为. (Ⅰ)求的值; (Ⅱ)在中,分别为内角所对的边,若,,且,,求的值.
某区工商局、消费者协会在月号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取名群众,按他们的年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示. (Ⅰ)若电视台记者要从抽取的群众中选人进行采访,求被采访人恰好在第组或第组的概率; (Ⅱ)已知第组群众中男性有人,组织方要从第组中随机抽取名群众组成维权志愿者服务队,求至少有两名女性的概率.
已知函数(为实数). (Ⅰ)当时,求函数的图象在点处的切线方程; (Ⅱ)设函数(其中为常数),若函数在区间上不存在极值,且存在满足,求的取值范围; (Ⅲ)已知,求证:.
已知抛物线的焦点为,抛物线上存在一点到焦点的距离为,且点在圆上. (Ⅰ)求抛物线的方程; (Ⅱ)已知椭圆的一个焦点与抛物线的焦点重合,若椭圆上存在关于直线对称的两个不同的点,求椭圆的离心率的取值范围.
设是等差数列,是各项都为正整数的等比数列,且,,,. (Ⅰ)求,的通项公式; (Ⅱ)若数列满足(),且,试求的通项公式及其前项和.