(本小题满分14分)已知函数,,设曲线在点处的切线方程为. 如果对任意的,均有:①当时,;②当时,;③当时,,则称为函数的一个“ʃ-点”.(Ⅰ)判断是否是下列函数的“ʃ-点”:①; ②.(只需写出结论)(Ⅱ)设函数.(ⅰ)若,证明:是函数的一个“ʃ-点”;(ⅱ)若函数存在“ʃ-点”,直接写出的取值范围.
(本小题满分14分)已知函数. (Ⅰ)若函数的图象在处的切线斜率为,求实数的值; (Ⅱ)在(Ⅰ)的条件下,求函数的单调区间; (Ⅲ)若函数在上是减函数,求实数的取值范围.
(本小题满分15分)已知数列,满足,,且对任意的正整数,和均成等差数列. (Ⅰ)求、的值; (Ⅱ)证明:和均成等比数列; (Ⅲ)是否存在唯一正整数,使得恒成立?证明你的结论.
(本小题满分15分)设椭圆C:(),,为左、右焦点,为短轴端点,且,离心率为,为坐标原点. (Ⅰ)求椭圆的方程; (Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点、,且满足 ?若存在,求出该圆的方程,若不存在,说明理由.
(本小题满分15分)在等腰梯形中,,,为上的点,,将沿折起,使,,,,为的中点,在上,满足(). (Ⅰ)求证; (Ⅱ)当为何值时,二面角余弦值为.
(本小题满分15分)已知函数,若的最大值为1. (Ⅰ)求的值,并求的单调增区间; (Ⅱ)在中,角、、所对的边是、、,若,且,试判断三角形的形状.