(本小题满分12分)平面直角坐标系中,椭圆C:()的离心率为,焦点为、,直线:经过焦点,并与C相交于A、B两点.(1)求C的方程;(2)在C上是否存在C、D两点,满足∥,,若存在,求直线的方程; 若不存在,说明理由.
(本小题满分13分) 给定椭圆,称圆心在原点,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为. (I)求椭圆C的方程和其“准圆”方程; (II )点P是椭圆C的“准圆”上的一个动点,过点P作直线,使得与椭圆C都只有一个交点,且分别交其“准圆”于点M,N . (1)当P为“准圆”与轴正半轴的交点时,求的方程; (2)求证:|MN|为定值.
(本小题满分14分) 已知函数, (I)当时,求函数的极值; (II)若函数在区间上是单调增函数,求实数的取值范围.
(本小题满分13分) 若数列满足,为数列的前项和. (Ⅰ) 当时,求的值; (Ⅱ)是否存在实数,使得数列为等比数列?若存在,求出满足的条件;若不存在,说明理由.
(本小题满分14分) 在斜三棱柱中,侧面平面,. (I)求证:; (II)若M,N是棱BC上的两个三等分点, 求证:平面.
(本小题满分13分) 某园林局对1000株树木的生长情况进行调查,其中槐树600株,银杏树400株. 现用分层抽样方法从这1000株树木中随机抽取100株,其中银杏树树干周长(单位:cm)的抽查结果如下表:
(I)求的值 ; (II)若已知树干周长在30cm至40cm之间的4株银杏树中有1株患有虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.求排查的树木恰好为2株的概率.