(本小题满分14分)已知函数.(Ⅰ)若函数的图象关于点对称,直接写出的值;(Ⅱ)求函数的单调递减区间;(Ⅲ)若在区间上恒成立,求的最大值.
已知定义在R上的函数f(x)=的周期为,且对一切xR,都有f(x); (1)求函数f(x)的表达式; (2)若g(x)=f(),求函数g(x)的单调增区间;
已知函数在一个周期内的图像下图所示。 (1)求函数的解析式; (2)设,且方程有两个不同的实数根,求实数m的取值范围和这两个根的和。
正项数列中,前n项和为,且,且. (1)求数列的通项公式; (2)设,,证明.
设数列{}是等差数列,,时,若自然数满足,使得成等比数列,(1)求数列{}的通项公式;(2)求数列的通项公式及其前n项的和
设是三角形的内角,且和是关于方程的两个根. (1)求的值; (2)求的值.