已知椭圆C:,(a>b>0)的两焦点分别为F1、F2,,离心率.过直线l:上任意一点M,引椭圆C的两条切线,切点为A、B.(1)在圆中有如下结论:“过圆x2+y2=r2上一点P(x0,y0)处的切线方程为:x0x+y0y=r2”.由上述结论类比得到:“过椭圆(a>b>0),上一点P(x0,y0)处的切线方程”(只写类比结论,不必证明).(2)利用(1)中的结论证明直线AB恒过定点();(3)当点M的纵坐标为1时,求△ABM的面积.
【改编】已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若,且存在,不等式恒成立,求m的取值范围.
已知是复数,若为实数(为虚数单位),且为纯虚数. (1)求复数; (2)若复数在复平面上对应的点在第四象限,求实数的取值范围
(本小题满分12分)已知椭圆,其中是椭圆的右焦点,焦距为2,直线与椭圆交于点,点的中点横坐标为,且(其中). (1)求椭圆的标准方程; (2)求实数的值.
【改编】已知函数f(x)=(x+1)lnx-x+1. (1)若xf′(x)≤x2+ax+1,求a的取值范围; (2)证明:当时,;
某社团组织名志愿者利用周末和节假日参加社会公益活动,活动内容是:1、到各社区宣传慰问,倡导文明新风;2、到指定的医院、福利院做义工,帮助那些需要帮助的人.各位志愿者根据各自的实际情况,选择了不同的活动项目,相关的数据如下22的列联表所示:
(1)填上表中所空缺的数值。 (2)分层抽样方法在做义工的志愿者中随机抽取6名,年龄在20至40岁与大于40岁的应该各抽取几名? (3)根据(2)抽取的6名志愿者中任取2名,求选取的2人中分别来自上述年龄段各1人的概率。