已知椭圆C:,(a>b>0)的两焦点分别为F1、F2,,离心率.过直线l:上任意一点M,引椭圆C的两条切线,切点为A、B.(1)在圆中有如下结论:“过圆x2+y2=r2上一点P(x0,y0)处的切线方程为:x0x+y0y=r2”.由上述结论类比得到:“过椭圆(a>b>0),上一点P(x0,y0)处的切线方程”(只写类比结论,不必证明).(2)利用(1)中的结论证明直线AB恒过定点();(3)当点M的纵坐标为1时,求△ABM的面积.
已知函数,其中. (1)若对一切恒成立,求的取值范围; (2)在函数的图像上取定两点,记直线的斜率为,证明:存在,使成立.
已知函数的图象经过点M(1,4),曲线在点M处的切线恰好与直线垂直。 (1)求实数的值; (2)若函数在区间上单调递增,求的取值范围.
函数的最大值为3,其图像相邻两条对称轴之间的距离为 (1)求函数的解析式 (2)设,则,求的值
是等差数列,公差,是的前项和,已知. (1)求数列的通项公式; (2)令=,求数列的前项之和.
在中, (1)求的值; (2)求的值.