(本题12分)已知椭圆的左、右焦点分别为F1、F2,其中F2也是抛物线的焦点,M是C1与C2在第一象限的交点,且 (I)求椭圆C1的方程; (II)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线上,求直线AC的方程。
若a,b∈R,求证:≤+.
设点O为坐标原点,直线l:(参数t∈R)与曲线C:(参数∈R)交于A,B两点. (1)求直线l与曲线C的直角坐标方程; (2)求证:OA⊥OB.
求圆心为A(2,0),且经过极点的圆的极坐标方程.
⊙O1和⊙O2的极坐标方程分别为=4cos,=-4sin. (1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程; (2)求经过⊙O1,⊙O2交点的直线的直角坐标方程.
经过曲线C:(为参数)的中心作直线l:(t为参数)的垂线,求中心到垂足的距离.